Learning About Systems That Contain State Variables
نویسنده
چکیده
It is difficult to learn about systems that contain state variables when those variables are not directly observable. This paper formalizes this learning problem and presents a method called the @rarlve exrension merhod for solving it. In the iterative extension method, the learner gradually constructs a partial theory of the state-containing system. At each stage, the learner applies this partial theory to interpret the I/O behavior of the system and obtain additional constraints on the structure and values of its state variables. These constraints can be dpplied to extend the partial theory by hypothesizing additional internal state variables. The improved theory can then be applied to interpret more complex I/O behavior. This process continues until a theory of the entire system is obtained. Several sufficient conditions for the success of this method are presented including (a) the observabtlity and decomposability of the state information in the system. (b) the learnability of individual state transitions in the system, (c) the ability of the learner to perform synthesis of straight-line programs and conlunctive predicates from examples and (d) the ability of the learner to perform theory-driven data interpretation. The method is being implemented and applied to the problem of learning UNIX file system commands by observing a tutorial interaction with UNIX.
منابع مشابه
Georeferencing Semi-Structured Place-Based Web Resources Using Machine Learning
In recent years, the shared content on the web has had significant growth. A great part of these information are publicly available in the form of semi-strunctured data. Moreover, a significant amount of these information are related to place. Such types of information refer to a location on the earth, however, they do not contain any explicit coordinates. In this research, we tried to georefer...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملPrediction of Vapor-Liquid Equilibria Using CEOS /GE Models
The present study investigates the use of different GE mixing rules in cubic equations of state for prediction of phase behavior of multicomponent hydrocarbon systems. To predict VLE data in multicomponent symmetric and asymmetric mixtures such as systems that contain light gases (nitrogen, carbon dioxide, etc.) and heavy hydrocarbons, the SRK equation of state has been combined with excess Gib...
متن کاملDynamical Structure Functions for the Estimation of LTI Networks with Limited Information
This research explores the role and representation of network structure for LTI Systems. We demonstrate that transfer functions contain no structural information without more assumptions being made about the system, assumptions that we believe are unreasonable when dealing with truly complex systems. We then introduce Dynamical Structure Functions as an alternative, graphical-model based repres...
متن کامل